Cyclicity and invariant subspaces in Dirichlet spaces
نویسندگان
چکیده
منابع مشابه
On Cyclicity in Weighted Dirichlet Spaces
We extend some results of Brown and Shields on cyclicity to weighted Dirichlet spaces 0<α< 1. We prove a comparison theorem for cyclicity in these spaces and provide a result on the geometry of the family of cyclic vectors in general functional Hilbert spaces.
متن کاملSubspaces of Rearrangement-invariant Spaces
We prove a number of results concerning the embedding of a Banach lattice X into an r. i. space Y. For example we show that if Y is an r. i. space on [0, oo) which is/7-convex for some/? > 2 and has nontrivial concavity then any Banach lattice X which is r-convex for some r > 2 and embeds into Y must embed as a sublattice. Similar conclusions can be drawn under a variety of hypotheses on Y; if ...
متن کاملHankel operators and invariant subspaces of the Dirichlet space
The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f ′ is square integrable with respect to two-dimensional Lebesgue measure. In this paper we prove that the invariant subspaces of the Dirichlet shift are in 1-1 correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subs...
متن کاملInvariant Subspaces of the Dirichlet Shift and Pseudocontinuations
In this paper we study extremal functions for invariant subspaces Ji of the Dirichlet shift, i.e., solutions <p of the extremal problem »up{|/"»(0)|/||/||fl:/eur, /VO}. Here n is the smallest nonnegative integer such that the sup is positive. It is known that such a function <p generates J! . We show that the derivative (zip)' has a pseudocontinuation to the exterior disc. This pseudocontinuati...
متن کاملInvariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2016
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2016.02.027